SOAP API Design Principles

This page should be guideline for everyone, who creates a new service / APl function. All paterns
used in Atollon SOAP API should be mentioned here so we do not solve one goal by different
implementations.

Fair usage policy

Every atollon integration, which behaves like a logged user (uses atollon session) should not send
more than 2 requests in parallel. This helps the atollon to provide quality of service to all users
even in peak usage and extensive operations (like copying big sets of data and so on).

Updating Atollon objects

There are some principles to understand when working with (or building) atollon API.
Understanding of those principles may prevent accidental data loss, so you better bare them in
mind.

1. Before updating atollon object, you need to have valid copy of whole object before
updating. Update function typically reads all editable parameters and replace them. That
is why you need to send all of them, because otherwise the empty ones would be
considered to be deleted.

2. Some Get methods do not return pure atollon object, but extended one. Typically
extended by selected or derived fields from another object. The reason behind is the
reduction the of request amount. Good example is GetFolder, which returns primary
contact details (name, surname, primary mobile, primary email etc.). Those extended
parameters should not be a part of the update request, because server ignores derived
fields in update functions (if you send them, they will be ignored anyway).

3. There are two ways how the relation between two atollon objects is maintained. The
selected solution usually depends on the bussiness importance of the relation or the
workflow and can be tracked in the Atollon Lagoon, which is etalon of APl usage.

1. Edit ID of related object in update function.
2. Separate API function call, which creates the relation.

FILTER in listing functions

Unified filter desing adds high value to listing function with low amount of time needed to
implement. This paragraph focuses on those functions, which support filtering by FILTER.

Example

<FILTER>
<COL>
<name>draftType</name>
<type>equals</type>
<value>l</value>
<negation>true</negation>
</COL>
<COL>
[kname>provider Name</name>
[ktype>contains</type>
[kvalue>Atol</value>
</COL>
</FILTER>

Filter contains list of conditions, which defines values we want ot have in the result. Each condition
consits of 4 elements.

name - Defines which field we want to filter on. It is Enum of possible parameter names. Since we
can not use Enum type (mooring request translation does not support this type) atm, write posible
names into coment!

type - Defines the type of comparision used in condition. It is an Enum of possible values. All
functions does not have to implement all types of comparision, in case they do not, please mention
the supported ones in documentation.

Possible values are:

equals - selected rows have to find pure match (column = value)
contains - defines usage of ILIKE %value% comparision
regular - request contains regular expression (not implemented yet)
in - set of values (eg. usage of IDs and so) (currently implemented for comma-separated
integer values only) (column=ANY(E'{value}'))
5. any - usable for testing if value is included in the array type column (value=ANY(column)
)
6. range - range of values (1-100, 2016-08-23T00:00:00 - 2016-09-23T00:00:00) (not
implemented yet)
7. mask - integer bitmap mask (column & mask <> 0)
8. less - numerical comparison (column < value)
9. lessOrEquals - numerical comparison (column <= value)
10. greater - numerical comparison (column > value)
11. greaterOrEquals - numerical comparison (column >= value)

P wWwhH

value - string representation of value (yes, it is kinda sad that we can not verify typeon teh WSDL
level, even if it is just simple int, but that is the price for the variability in minimum amount of
attributes).

negation - allows add NOT before the any type condition

ORDER in listing functions

Ordering is pretty important feature in terms of end user usage comfort. That is why every function
should contain this option. | will personally find and punish every single guy, who does not use
ordering enabled o client side on collections, which support the ordering!

example

<ORDER>
<COL>
[kname>created</name>
[kdesc>true</desc>
</COL>
<COL>
[kname>total</name>
[kdesc>true</desc>
</COL>
</0RDER>

name - Defines which field are we going to order on. It is Enum of possible field names.

desc - pretty self-explanatory, but for sure - Boolean which defines if we want to use ascending
(false) or descending (true) sorting.

Revision #3
Created 30 October 2024 18:29:27 by Jan Safka
Updated 30 October 2024 18:31:22 by Jan Safka

